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Random walks on invasion percolation clusters 
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Abstract. Results are presented of numerical simulations of random walks on invasion 
percolation clusters in two and three dimensions, including simulations on continuum 
percolation clusters at threshold. Walks of up to 10’ steps were taken. The results indicate 
that the fracton dimension of invasion percolation clusters, both on regular lattices and in 
the continuum, is the same, within numerical errors, as the fracton dimension of ordinary 
percolation clusters at threshold. 

1. Introduction 

Several numerical simulations of the diffusion of random walks on percolation clusters 
have been carried out [l-71, using de Gennes’ idea of ‘the ant in the labyrinth’ [8]. 
In these simulations an ‘ant’, starting at an arbitrary site of a percolation cluster, 
randomly selects one of its nearest neighbours on the cluster and either moves there, 
if the site is occupied, or stays put, if the site is vacant. Whatever the decision, the 
time step is incremented by one unit. The process is repeated at each subsequent time 
step t and the ant traces out a random walk on the cluster. 

There are two different approaches which may be taken: either to prepare a lattice 
realisation by randomly occupying the sites, with probability p ,  and then to allow the 
ant to start its walk on any cluster chosen randomly, or else to restrict the ant’s walk 
to a single cluster, usually the incipient infinite cluster grown by the Leath method 
[9]. In this paper we consider the case when the ant is restricted to move on invasion 
percolation clusters, which resemble the incipient infinite cluster of percolation [ 10, 111. 

It is of interest to study the asymptotic power law for the average squared displace- 
ment of the ant ( R 2 )  at time t :  

( R 2 )  - t2/**. 

The diffusion is known to be anomalous at the percolation threshold [5,6,12,13]. 

exponent d, via 
Another exponent of interest is the fracton dimension d’ which is related to the 

d’=  2D/d, 

where D is the fractal dimension of the incipient infinite cluster. 
The fracton dimension was introduced by Alexander and Orbach [ 141 in a discussion 

of the density of the vibrational states on fractals. They conjectured that d‘ = * i s an 
exact relation for percolation. 
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If the AO conjecture is true it implies that the dynamical exponents of percolation 
can be expressed in terms of the static exponents. For example, we would have 

The exactness of the AO conjecture has been a matter of some controversy [15-181. 
However, very high accuracy Monte Carlo simulations in two dimensions (see [ 11 and  
references within) and, more recently, in three dimensions [2], have shown small 
deviations from the AO values. 

d , = ; D .  

2. Numerical simulations 

The present investigations were carried out on invasion percolation clusters in two 
and three dimensions. It was hoped that it would be possible to extend the calculations 
of Ben Avraham and Havlin [5,6] for walks on single clusters because invasion 
percolation clusters can be grown to any size and  hence longer walks can be taken 
without encoutering edge effects. To some extent these hopes were realised, although 
in the two-dimensional case the simulation ran into problems for walks greater than 
IO4  steps for reasons which are not clearly understood by this author. 

'Invasion percolation' was first introduced by Lenormand [ 191 and Chandler et a1 
[20] in the context of a simulation of oil displacing water in a porous medium. It can 
be used as a method for growing single clusters on lattice structures. Wilkinson and  
Barsony [ 101 have shown that an  interesting relationship exists between invasion 
percolation clusters and the incipient infinite cluster of ordinary percolation at thresh- 
old. By numerical simulations of invasion percolation they managed to obtain estimates 
of the critical percolation threshold and  the gap exponent and fractal dimension of 
ordinary percolation in two and  three dimensions. Within numerical errors, their 
results support the conjecture that invasion percolation reproduces ordinary percolation 
at threshold. However, this conjecture has not been shown to hold rigorously and  is 
still somewhat mysterious [ 113. The present investigations give it further support by 
providing estimates of dynamical scaling exponents for invasion percolation clusters. 

Furthermore, these investigations include a simulation of random walks on the 
incipient infinite cluster of continuum percolation. The continuum percolation clusters 
were grown by the method described in [21]. Using this method one can grow single 
clusters at threshold without knowing what the exact value of p c  is and  without having 
an  underlying regular lattice structure. It also allows one to define nearest neighbours 
for the sites in the continuum. We were able to make more extensive simulations than 
those carried out by Wagner and Balberg [22] but, because of the problems which 
arose in all our 2~ simulations for t > lo4, the net results were no more accurate. 

All the simulations involved averaging over several random walks on several 
different clusters. The clusters were grown so that their average radius was much larger 
(typically two or three times larger) than the average radius of the random walk at  
long times. The quantities which were measured were the following [2,3,5,7].  

( i )  The square of the radius of the walk at time step t ,  R:. This provided an  estimate 
of the exponent d ,  of the walks via the relation: 

( R f ) -  t 2 i d - .  

( i i )  The average number of returns to the origin at step t ,  P,(t). This provided a 
direct estimate of the fracton dimension of the walks via the relation: 

Po( t )  - 1 - 2 1 2 .  
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(iii) The number of distinct sites visited by the walk at step t ,  S , .  This gave an 
estimate of the fracton dimension via the relation: 

( S , )  - td ’ **  

3. Discussion of results 

3.1. Two dimensions 

In two dimensions, simulations of random walks were carried out on invasion percola- 
tion clusters on square and triangular lattices. The clusters were grown to a size of 
100 000 sites, which was generous since there was an upper bound of 1500 sites over 
all the walks for the number of distinct sites visited by a walk. For the square lattice, 
286 walks of lo5 steps were executed on each of 54 clusters, making a total of 15 444 
walks. For the triangular lattice, 35 clusters were used and the total number of walks 
executed was 286 x 35 = 10 010. 

A graph of log(R:)”* against log t for the triangular lattice is shown in figure 1. 
There are deviations from the straight line behaviour at small t ,  as expected, but also 
at t bigger than lo4, which was not expected. It is unlikely that the deviations at large 
t are due to the walks hitting the edge of the cluster since this was specifically excluded 
in the computer program and was the reason why the clusters were grown to such a 
large size. Possibly it is just that more statistics are needed for very long walks. 
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Figure 1. This shows graphs of log R,  against log f for random walks on invasion percolation 
clusters on the triangular lattice (A), cubic lattice (+) and in the continuum (0)  where 
R ,  = (R?)” ’ .  

The best value for the equilibrium slope of the graph is 2.82k0.09. The best value 
for the square lattice was 2.87 * 0.08. (The errors are calculated by dividing the straight 
line up into sections and seeing how the slope varies.) Ben Avraham and Havlin [6] 
reported a value of 2.84k0.05 and the most accurate simulation known to the author 
[ l ]  gives a value of 2.866k0.009. The value corresponding to the AO conjecture is 
3 D = 2.844. 
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A similar analysis was carried out for the graph of log(S,) against log t .  It was 
found that the best values for the equilibrium slopes of the graphs were 0.64* 0.05 for 
the triangular lattice and 0.62 * 0.05 for the square lattice. Ben Avraham and Havlin 
reported a value of 0.63. These results are smaller than the asymptotic AO value o f f .  
However, as discussed in [6], one expects them to be smaller because they depend on 
the value of the fractal dimension which is effectively smaller for a finite cluster. 

Figure 2 shows a graph of log Po( t )  against log t for the square lattice. The results 
at small t were improved by carrying out an additional simulation of 100000 walks 
of lo2 steps. The best value for the slope of the graph is -0.64* 0.03. The same value 
was obtained for the triangular lattice. 

1 2 3 
l og  f 

Figure 2. This shows a graph of log Po( t )  against log t for the square lattice. 

3.2. Three dimensions 

In three dimensions, random walks were carried out on invasion percolation clusters 
on a cubic lattice. The clusters were grown into a lattice of fixed extension and their 
size varied from about 20 000 to 50 000 sites. 300 walks of IO5 steps were executed on 
each of 50 clusters, making a total of 15 000 walks. 

The results for three dimensions were smoother than those for two dimensions. 
Figure 1 shows a graph of log(R:)"2 against log t .  From these results, the asymptotic 
value of the slope was estimated to be 3.65*0.09, which compares favourably with 
the value of 3.68*0.05 [6] and the AO value of -3.73. Note that there is no obvious 
downturn for large t, as happened in the two-dimensional case. 

The same sort of analysis can be done to estimate the asymptotic value of the slope 
of the graph of log(S,) against log t .  The value obtained is 0.63 * 0.03. 

Similarly, for the graph of log Po( t )  against log t the estimated slope is -0.64 i 0.04. 

3.3. Continuum percolation clusters 

The simulation of random walks on continuum percolation clusters was slightly different 
from that for clusters on regular lattices. The continuum clusters were grown using 
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the technique described in [21]. This technique involves the formulation of the 
continuum percolation of equal-sized disks in two dimensions as a bond percolation 
problem on a random lattice [23]. Because of the introduction of the random lattice 
it becomes possible to define ‘nearest neighbours’ for sites on continuum percolation 
clusters. When growing the clusters, information was stored about the coordinates of 
the sites, the number of their nearest neighbours and which of their nearest neighbours 
were on the cluster. When simulating a random walk on a continuum cluster the choice 
for the ant’s next step was decided in the following way. 

Assume that the ant is at site i at time t. 
Choose at random a number r between 1 and the total number of nearest neighbours 

of site i. 
If r is greater than the number of nearest neighbours of site i which are on the 

cluster, then the ant remains where it is at time t + 1. 
Otherwise, the ant moves to the rth site in the list of nearest neighbours of site i 

which are on the cluster. 
This algorithm is somewhat different from the one used by Wagner and Balberg 

[22] in which, because they have no well defined nearest neighbours, they use M, the 
maximum number of intersections per disk in the particular sample studied, as a 
normalising constant. In their algorithm, if a given circle has N intersecting neighbours, 
the ant will move to each of these neighbours with probability 1/M and stay put with 
probability (1 - N ) / M .  As they note, this leads to a slower diffusion on average than 
in usual lattice algorithms although their results show that it does not affect the 
asymptotic value for d, .  

The continuum clusters were grown to a size of 30 000 sites. A total of 16 600 walks 
of lo4 steps were carried out, using 14 different clusters. (In the simulations of Wagner 
and Balberg, in which the ant was allowed to move on finite clusters as well as the 
infinite cluster, the total number of sites was 10 000, meaning that their clusters were 
of a considerably smaller radius than ours. We had hoped that this would enable us 
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Figure 3. This shows a graph of C, against r for random walks on continuum percolation 
clusters where C, = R , / t ” d * .  
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to consider longer walks; however, in the light of our experiences for the square and 
triangular lattice cases we did not feel that we could trust results for t >  IO4.) 

The same quantities were calculated as in the regular lattice case. 
Figure 1 shows a graph of log(R:)'/* against log t. The estimated value of the 

equilibrium slope of this graph is 2.90k0.15. The value given by Wagner and Balberg 
is 2.87*0.13. 

Figure 3 shows a graph of ( R ~ ) 1 / 2 / f 1 / 2 . 9 0  against t. It can be seen how the results 
oscillate about their equilibrium value, giving rise to the large error in the estimate. 

An analysis of the results for ( S , )  shows that the best estimate for the slope of the 
graph of log(S,) against log t is 0.62*0.06. 

The estimate obtained for the slope of the graph of log Po( t )  against log t is 

These results should be compared with those obtained in the two-dimensional case 
on square and triangular lattices. The results from the simulation of random walks 
on continuum clusters are not as accurate as those on regular lattices. However, they 
seem to show the same average behaviour. 

-0.62 * 0.06. 

4. Conclusion 

These simulations indicate that the fracton dimension of invasion percolation clusters, 
both on regular lattices and in the continuum, is the same, within the stated errors, as 
the fracton dimension of ordinary percolation clusters at threshold. 
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